Durchbruch bei Antikörper-vermittelter Abstoßung

Georg Böhmig Division of Nephrology and Dialysis Department of Medicine III

vienna transplant and complement laboratory

Diebold et al., *Transplantation* 2024; in press

AMR – Cornerstones

Frequent

AMR in ~3-12% of KTX recipients

► Clinical impact

Risk factor for graft loss (e.g. DEKAF study: HR ~10-fold increased!) Graft failure: ABMR=dominant cause

High costs

Medicare & Medicaid, analysis 2006-2011: 4-fold increase in costs plus ~35,000 \$/patient/year over 2 years after diagnosis

Treatment?

Currently used treatments - low level of evidence

Hart et al., *Clin Transplant* 2021; 35(7):e14337; e14320 Sellares et al., *Am J Transplant* 2012 Feb;12(2):388 Mayrdorfer et al., *J Am Soc Nephrol* 2021; 32(6):1513 Hart et al., *J Med Econ* 2021; 24(1):1011 Schinstock et al., *Transplantation* 2020; 04(5):911

Causes of Graft Loss

Primary causes

Primary/secondary

Mayrdorfer et al., JAm Soc Nephrol 2021: 32:1513

Diebold et al., *Transplantation* 2024; in press

AMR – "Standard-of-Care" Therapy

2019 Expert Consensus - Transplantion Society Working Group

Timing	DSA	Histology (Banff 2017)	Standard of care ^a	Consider adjunctive therapies
Early ^a Acute (<30 days	Preexisting DSA (or nonimmunologi-	Active AMR	Plasmapheresis (daily or alternative day \times 6 based on DSA titer) (1C) ^b	Complement inhibitors (2B) Rituximab 375 mg/m ² (2B)
posttransplant)	cally naive)		IVIG 100 mg/kg after each plasmapheresis treatment or IVIG 2 g/kg at end of plasmapheresis treatments (1C)	Splenectomy (3C)
Late (>30 days	Preexisting DSA	Active AMR	Plasmapheresis (daily or alternative day \times 4–6 based on	Rituximab 375 mg/m ² (2B)
posttransplant)	Ū		DSA titer) $(2C)^{b}$	•
			IVIG 100 mg/kg after each plasmapheresis treatment or	
			IVIG 2 g/kg at end of plasmapheresis treatments (2C)	
			Corticosteroids (EU)	
		Chronic AMR	Optimize baseline immunosuppression (eg, add steroids if on a steroid-free regimen) (1C)	IVIG (3C)
	De novo DSA	Active AMR	Optimize baseline immunosuppression (eg, add steroids if on a steroid-free regimen) (1C)	Plasmapheresis and IVIG (3C) Rituximab (3C)
			Evaluate and manage nonadherence	
		Chronic AMR		IVIG (3C)

Schinstock et al., Transplantation 2020; 04(5):911

AMR – Phase II-IV Trials

Primary target	Compound	MOA	Trial phase	Trial acronym	Identifier	Author, year
DSA	Imlifidase	IgG cleavage	II (finished)	-	NCT03897205	Halleck, 2024
Plasma cells	Bortezomib	Proteasome	II (finished)	BORTEJECT	NCT01873157	Eskandary, 2018
		inhibition	II (finished)	TRIBUTE	NCT02201576	-
			II (recruiting)	-	NCT03737136	-
PC/NK cells	Felzartamab	CD38 binding	II (finished)	-	NCT05021484	Mayer, 2024
B cells	Rituximab	B cell depletion	III (finished)	RITUX-ERAH	NCT01066689	Sautenet, 2016
			II (prematurely terminated)	TRITON	2010-023746-67	Moreso, 2018
			IV (prematurely terminated)	RituxiCAN-C4	NCT00476164	Shiu, 2020
			III (active, not recruiting)	TAR:GET-1	NCT03994783	-
	Fostamatinib	SYK inhibition	II (recruiting)	FOSTAMR	NCT03991780	-
IL-6/IL-6R	Clazakizumab	IL-6 binding	II (finished)	-	NCT03444103	Doberer, 2021
			III (prematurely terminated)	IMAGINE	NCT03744910	-
	Tocilizumab	IL-6R blockade	III (recruiting)	INTERCEPT	NCT04561986	-
Complement	C1-INH	CP/AP/LP	II (finished)	-	NCT01147302	Montgomery, 2016
		blockade	III (prematurely terminated)	-	NCT02547220	-
			III (prematurely terminated)	-	NCT03221842	-
	BIVV0020	C1s inhibition	II (recruiting)	-	NCT05156710	-
	Eculizumab	C5 blockade	III (finished)	-	NCT01327573	Kulkarni, 2017
			II (prematurely terminated)	-	NCT01895127	-

CD38 Antibody Felzartamab in Late AMR

CD38

- Multifunctional receptor and enzyme
- Expressed on various types of immune cells:
 - \checkmark highest expression on plasma cells
 - ✓ expression on subsets of: NK cells, T cells, B cells, and myeloid cells

Felzartamab

- Human IgG1λ CD38 antibody
- Primary mode of action:

 ✓ Lysis of target cells via antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis¹

✓ but not complement-dependent cytotoxicity¹

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

A Randomized Phase 2 Trial of Felzartamab in Antibody-Mediated Rejection

K.A. Mayer, E. Schrezenmeier, M. Diebold, P.F. Halloran, M. Schatzl, S. Schranz, S. Haindl, S. Kasbohm, A. Kainz, F. Eskandary, K. Doberer, U.D. Patel, J.S. Dudani, H. Regele, N. Kozakowski, J. Kläger, R. Boxhammer, K. Amann, E. Puchhammer-Stöckl, H. Vietzen, J. Beck, E. Schütz, A. Akifova, C. Firbas, H.N. Gilbert, B. Osmanodja, F. Halleck, B. Jilma, K. Budde, and G.A. Böhmig

Trial Scheme and Study Flow

Primary Outcome: Safety of Felzartamab

	Placebo (N=11)		Felzartamab (N=11)	
	Patients with AE – no. (%)	Number of AE	Patients with AE – no. (%)	Number of AE
Patients with a TEAE – no. (%)	11 (100)	81	11 (100)	119
Mild	9 (81.8)	37	11 (100)	61
Moderate	11 (100)	42	11 (100)	55
Severe	1 (9.1)	2	2 (18.2)	3
Patients with a TRAE – no. (%)	7 (63.6)	11	10 (90.9)	27
Infusion-related reaction	0 (0)	0	8 (72.7)	8

Eight infusion-related reactions: mild to moderate severity

- Limited to first dose
- Symptomatic treatment and reduced infusion rate
- No treatment discontinuations

Reduction in AMR Activity

*One patient in the placebo group lost their graft prior to Week 24 due to ongoing chronic active AMR

Reduction in Molecular AMR and Injury

dd-cfDNA (%) -0.75 -0.58 -0.25 (-1.41, -0.09) (-1.90, 0.73) (-0.91, 0.41)

Placebo

Effect on NK cells and DSA

Rapid normalization of dd-cfDNA levels

Kidney Function and Proteinuria

Urinary Protein-Creatinine Ratio

Mayer et al., N Engl J Med, 2024; 391(2):122-132

Felzartamab Treatment Effect: iBox Score

Lombardi et al., *in revision*

iBox Algorithm for predicting the risk of kidney transplant loss¹: Time after transplantation eGFR (ml/min/1.73 m²) Proteinuria (mg/g) Anti-HLA DSA MFI Histology: *g, ptc, i, t cg*

 \rightarrow Probability of 5-year graft survival:

• Slope: Baseline to Month 6 = treatment effect

• Slope: Month 6 to Month 12 = off treatment

¹Loupy at et al., *BMJ 2019*

Felzartamab - Transcriptomics

Diebold et al., Nature Med, accepted

Diebold et al., Nature Med, accepted

Trial Extension

Targeting CD38 in AMR – Case reports/series

Author, year	Treatment schedule	Patients	Patients, Results
Kwun et al., 2019	Daratumumab (IV) + Eculizumab 8 infusions; 12 infusions after AMR recurrence	N=1	 Late, DSA+ AMR after combined KTK+HTX AMR resolution (prolongation of therapy after AMR recurrence) DSA-MFI reduction
Spica et al., 2019	Daratumumab (IV) 6 infusions	N=1	 Early AMR (7 days) after ABOi Tx AMR resolution ABO Ab reduction
Doberer et al., 2021	Daratumumab (IV) 9 months	N=1	 Late, DSA+ AMR Resolution of AMR activity (morphology/MMDx) Depletion of PC and NK cells DSA-MFI reduction Sublinical BL lesion (t3; no molecular TCMR)
Süsal et al., 2023	Daratumumab (SC) + BG-specific IA 4 doses	N=1	 Early, DSA+/ABO Ab+ AMR (5 days after ABO+HLAi Tx) AMR resolution ABO and HLA Ab reduction
Zhu et al., 2023	Daratumumab (IV) / + PP/IVIG >1 year	N=2	 Late AMR Decrease in AMR activity (morphology) DSA-MFI reduction TCMR (+AMR recurrence) in one patient
Lemal et al., 2024	Daratumumab (IV) Single dose	N=3	 Active AMR AMR resolution DSA-MFI decline to negative; FCXM conversion
Vicklicky et al., 2024	Daratumumab (SC) 6 months	N=1	 Early, DSA+ AMR AMR resolution (morphology/MMDx) DSA-MFI decline to negative dd-cfDNA reduction
Osmanodja et al., 2024	Daratumumab (IV) 9 months	N=2	 Early/late DSA+ AMR Resolution of AMR acivity Depletion of NK cells DSA-MFI reduction dd-cfDNA reduction

Targeting CD38 in refractory AMR after desensitization – Leipzig/Berlin Case 1

Osmanodja et al, Transplant Int 2024, in press

Targeting CD38 in refractory AMR after desensitization – Prague Case

- 4th KTX, 91% cPRA + HLA class II DSA (MFI 4200)
- Desensitization with PP+IVIG (+RTX)/alemtuzumab

Viklicky et al, Transplant Direct 2024; 10(8):p e1685

Combined desensitization with imlifidase plus daratumumab?

- 35-year-old female patient with SLE and antiphospholipid syndrome
- Previous graft loss due to renal vein thrombosis)
- ABO/HLAi LD-TX; positive T- and B-cell CDC-XM

Schrezenmeier et al, Transfus Med Hemother 2024; 51(3):158-163

Pathogenesis of MVI? (DSA+ vs DSA- MVI?)

40-50% MVI cases without HLA-DSA

HLA DSA-negative MVI(+v) in three 2024 Vienna Cases – Response to CD38 mAb

Variables	Case 1 (2024)	Case 2 (2024)	Case 3 (2024)
Tx Type; Date	DD Tx; February 2024	DCD Tx; April 2024	ABOi LD Tx; June 2026
Tx Number	Second Tx	First Tx	First Tx
Timing	Early	Early (after 2 months)	Early (Index Bx after 3 days)
Immunosuppression	IL-2R/Tac/MMF/Pred	IL-2R/Tac/MMF/Pred	IAS/IL-2R/Tac/MMF/Pred
Graft function	DGF	SCr 1.3 mg/dL; PCR 1000 mg/g	Dialysis dependency
HLA-DSA	none	none	none
Other	none	none	Anti-B 1:8 (no increase)
MVI	g+ptc score = 6	g+ptc score = 4	g+ptc score = 4
C4d staining	negative	Positive (score = 3)	Positive (score = 3)
Intimal arteritis	v score = 2	v score = 1	v score = 1
TCMR/BL	No tubulo-interstitial rejection	No tubulo-interstitial rejection	No tubulo-interstitial rejection
MMDx	Index Bx: no MMDx	Index Bx: no MMDx	Index Bx: ABMR score 0.43; under PP increase to 0.82
Treatment	Immunoadsorption Daratumumab (3 mo)	Immunoadsorption Daratumumab (3 mo)	Steroids; Plasmapheresis Daratumumab (3 mo)
Response	▼ ▼ histologic/molecular AMR	▼ ▼ histologic/molecular AMR	▼ ▼ histologic/molecular AMR

Unpublished data

Summary & Conclusions

Department of Medicine III

Matthias Diebold Konstantin Doberer Farsad Eskandary Susanne Haindl Katharina Mayer Martina Schatzl Georg A. Böhmig

Department of Pathology

Heinz Regele Nicolas Kozakowski Johannes Kläger

Institute of Virology

Hannes Vietzen Elisabeth Puchhammer-Stöckl

Department of Clinical Pharmacology

Bernd Jilma Sabine Schranz

Eva Schrezenmeier Aylin Akifova Klemens Budde

University of Alberta

Patrick Gauthier Jeff Reeve Phil Halloran

University of Basel

Transplantationsimmunologie & Nephrologie

Matthias Diebold

Uptal Patel Donna Flecher Houston Gilbert