Prime

Largest Selection of Critical

Standardize on One Platform

The Nova Prime critical care platform offers 4 models with flexible test menus and as many as 24 critical care tests. This is by far the largest number of model and test menu choices offered by any blood gas company and they are all tied together by common reagents, operating procedures, user interfaces and the NovaNetTM connectivity platform.

Most sites are looking to standardize critical care testing but have a variety of departments with different test menu requirements and sample throughput needs. The Nova Prime analyzers allow each department to choose the Nova model that best matches their test menu, sample throughput, and budgetary needs without buying unneeded capabilities.

The benefits of this unmatched flexibility are reduced costs, standardized operating procedures and the largest overall menu of tests to satisfy each department.

Prime Plus Comprehensive Model

Prime

The Largest Critical Care Test Menu

Stat Profile Prime Plus is a comprehensive, whole blood critical care analyzer that combines blood gases, electrolytes, metabolites, ePV (estimated plasma volume), hemoglobin, hematocrit, MCHC (mean corpuscular hemoglobin concentration), and CO-Oximetry in a simple compact device. Prime Plus combines maintenance-free, replaceable cartridge technology for its sensors and reagents with patented, new, maintenance-free, and non-lysing whole blood CO-Oximetry. Prime plus results are produced rapidly -in about one minuteand are combined with bidirectional connectivity and a powerful onboard data management system.

24-Test Prime Plus Menu

Blood Gases pH, *P*CO₂, *P*O₂, SO₂%

Electrolytes Na, K, iCa, iMg, Cl, TCO₂

Metabolites Glucose, Lactate, BUN (Urea), Creatinine

Volume Status Estimated plasma volume (ePV) **CO-Oximetry** O₂Hb, COHb, MetHb, HHb, HbF, Tbil

Hematology Hct, Hb, MCHC

Compact Size Height: 45.7 cm (18.20 in) Width: 14.20 in (35.6 cm) Depth: 15.50 in (39.1 cm)

Care Models, One Common Operating Platform

The Basics

The Prime Critical Care and Prime Blood Gas Models provide a basic panel of tests on venous, arterial or capillary whole blood samples for ICU and ED patients. The Prime ABG model offers blood gases on a small 50 µL sample.

Prime Critical Care Model Test Menu

Blood Gases pH, PCO₂, PO₂

Electrolytes Na, K, iCa, Cl

Hematology Hct

Metabolites Glucose, Lactate

Compact Size

Height: 39.1 cm (15.38 in) Width: 14.35 in (36.2 cm) Depth: 30.1 cm (12.00 in)

Prime Blood Gas Model Test Menu Blood Gases

pH, PCO₂, PO₂

Compact Size

Height: 39.1 cm (15.38 in) Width: 36.2 cm (14.35 in) Depth: 30.1 cm (12.00 in)

A New Generation Electrolyte Analyzer

The Prime ES Comp Plus model provides a low-cost option for running electrolytes including iMg and iCa. With its whole blood capability, Prime ES Comp Plus also serves as an excellent STAT electrolyte analyzer.

Prime Electrolyte Model Test Menu

Electrolytes	Compact Size						
Na, K, Cl, iCa, iMg, pH*	Height: 39.1 cm (15.38 in)						
Hematology Hct*	Width: 36.2 cm (14.35 in)						
	Depth: 30.1 cm (12.00 in)						

n (15.38 in) m (14.35 in)

Benefits of Standardizing with Nova Prime

Separate Sensor Cards and Calibrator Cartridges

Nova's individual sensor cards and calibrator cartridges are a lower-cost alternative to the inflexibility and waste of combined sensor/calibrator cartridge systems. By separating the sensor card from the reagent cartridge, reagents are not discarded when the sensor card life finishes first and sensor card life is not lost when reagents are finished first.

Clot Protection

Clot Block technology "blocks" or traps a clot in the sample probe where it can be easily flushed out. Clots are blocked from entering the MicroSensor Card preventing prolonged downtime or loss of Card life.

Automated Quality Control

Maintaining quality control is one of the most time consuming tasks in performing blood gas/critical care testing at multiple point-of-care sites. On-board automated quality control is a standard feature on all Prime platform blood gas/critical care analyzers. The Prime platform saves clinicians time by performing quality control for all analytes automatically at supervisor selectable intervals. Prime's fully automated, on-board liquid QC saves hours of time each week compared to individualized QC plans (IQCPs) and manually running controls.

NovaNet Connectivity

NovaNet is a single, economical solution for the bidirectional interface of all Nova point-of-care (POC) devices, including StatStrip glucose and all Stat Profile Prime analyzers, to the LIS/HIS/EMR.

- Over 70% of U.S. hospitals already use NovaNet for connectivity and management of Nova's StatStrip Glucose, Lactate, and Creatinine Meters.
- NovaNet is specifically designed to meet POC management and regulatory requirements by capturing patient test results, managing QC compliance, and recording operator activities.

Unique Tests for iMg, Urea, Creatinine, ePV and MCHC

Unique tests available on Prime platform eliminate the need for additional devices and workflow to monitor important critical care conditions such as kidney injury, plasma volume depletion or overload, arrhythmia and MCHC. The separate devices needed to provide these tests on a stat basis require additional sample draws, additional consumables, specimen labeling and transport to the lab. Prime Plus provides these tests as part of a 24 test critical care profile at dramatic cost savings with a single, small sample in about 1 minute.

Choice of Menus and Models

Individual departments can match their unique needs for test menu, sample workload, and budget to the appropriate Nova model. It is not necessary to purchase the most expensive analyzer for each department. Savings for training, consumables, and connectivity are realized by standardizing to one platform.

Models and Test Menus																		
	рН	PCO ₂	P02	Na	К	Cl	iCa	iMg	Glu	Lac	Hct	Hb	S0 ₂ %	CO-0x	BUN (Urea)	Creat	ePV	мснс
Prime Plus ABG/Lytes/ Metab/H+H/CO-Ox/BUN (Urea)/Creat	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Prime ABG/Lytes/Metab	•	•	•	•	•	•	•		•	•	•							
Prime Electrolyte	•			•	•	•	•	•			•							
Prime Blood Gas	•	•	•															

Clinical Value of Unique Prime Critical Care Tests

Prime Plus is the only blood gas/critical care analyzer to offer ionized magnesium, BUN (Urea), creatinine, estimated plasma volume and mean corpuscular hemoglobin concentration as part of its test menu. These tests offer important insights for cardiac, respiratory, renal, and volume status, enabling clinicians to better manage critically ill patients.

Ionized Magnesium

All Cause Mortality: Both hypomagnesemia and hypermagnesemia are associated with all-cause mortality.¹

Respiratory Function: Hypomagnesemia is a highly prevalent, but under diagnosed, electrolyte abnormality in critically ill patients. It is associated with a 26-44% increase in risk for needing ventilatory support,^{2,3,5} and a 53-96% increase in the duration of ventilatory support.^{4,5} Mg replacement therapy guided by real-time, serial iMg measurement improves patient outcome in these patients:

- 21% reduction in the need for ventilatory support⁴
- Up to 2.5 fewer days on ventilator3,5

Hypermagnesemia, while less common than hypomagnesemia, can also lead to diaphragmatic weakness requiring ventilatory support.6

ICU: Approximately 30% of ICU patients do not have agreement between iMg and tMg. This can lead to unnecessary Mg replacement and testing, or under-replacement.⁷

Cardiac Surgery: 75% of patients undergoing cardiopulmonary bypass (CPB) have postoperative hypomagnesemia which can cause reduced cardiac contractility, cardiac arrhythmias, and cardiac arrest. Peri-operative correction of hypomagnesemia, titrated by real-time serial measurement of iMg, reduces risk of arrhythmia after CPB:⁸

- 77% reduction in ventricular tachycardia
- 35% reduction in atrial fibrillation
- 115% increase in maintaining continuous sinus rhythm after surgery.

Kidney Function: For patients undergoing continuous venovenous hemofiltration (CVVH) with citrate, ionized magnesium and not total magnesium (tMg), represents the physiologically active fraction of magnesium in serum. As many as 40% of CVVH patients have tMg results that do not correlate with iMg status.⁹ This is thought to be because citrate is used in CVVH to bind Ca to anti-coagulate the blood. If citrate binds Ca, it binds Mg also, and the Mg/citrate complex would be measured in the tMg value. Thus, in this patient group, iMg is the only accurate way to assess a patient's effective Mg status.

BUN (Urea), Creatinine and eGFR

Kidney Function: Over 50% of intensive care unit (ICU) patients will develop acute kidney injury (AKI).¹⁰ AKI portends increased ICU stay, increased cost, and compromised outcome. Prime Plus is the only blood gas analyzer to provide optional whole blood creatinine and BUN (Urea) tests plus eGFR for rapid assessment of kidney function. The BUN/Creatinine ratio also provides an assessment of illness severity, prolonged ICU stay, and prognosis.

Estimated Plasma Volume (ePV)

Respiratory Function: In patients requiring ventilatory support, measuring ePV and Δ ePV may be useful additional data points to guide fluid management and guide extubation.

Heart Failure: ePV and Δ ePV have been shown to have prognostic ability in patients with congestive heart failure (CHF).¹¹ Another area of interest is the use of ePV to guide diuresis in patients admitted for CHF. Often the endpoint for volume reduction in heart failure patients is not apparent, and over-diuresis is common. ePV therapy and Δ ePV are useful parameters to help diurese in this challenging patient population.¹²

Kidney Function: Often patients on hemodialysis become hypotensive during treatment from having too much fluid removed, and this is associated with an increase in mortality.¹³ ePV and \triangle ePV can help to guide fluid balance in these patients. In addition to hemodialysis, ePV may be beneficial in following patients with CKD, AKI, to help optimize their management. CKD and AKI patients are often congested and trending ePV allows better assessment and treatment.

Sepsis: Septic patients are often total-body fluid overloaded due to capillary leakage and movement of fluid from the intravascular space to the extravascular space. As a result, patients with sepsis require significant fluid resuscitation. Accurately assessing intravascular volume is notoriously difficult, and using ePV gives the clinician important data to help with that critical parameter.^{11,12,14,15} ePV and Δ ePV help to determine whether the patient is intra-vascularly depleted, or if they have been given enough fluid to restore intravascular volume. It is useful in deciding whether to give more fluid or to start pressers.

Mean Corpuscular Hemoglobin Concentration (MCHC)

Anemias: MCHC, along with measured hemoglobin and hematocrit, provides insight to identify and manage certain anemias and their etiologies. Low MCHC is found in microcytic hypochromic anemias due to internal bleeding, iron deficiency, chronic low grade blood loss, and thalassemia. High MCHC is associated with autoimmune hemolytic anemia, macrocytic anemia, severe burns, vitamin B12 deficiency, chemotherapies, and hereditary spherocytosis.

Comprehensive Model

Test Menu

pH, PCO₂, PO₂, SO₂%, Hct, tHb, Na, K, Cl, iCa, iMg, Glu, Lac, BUN (Urea), Creat, TCO₂, HHb, O₂Hb, MetHb, COHb, ePV, MCHC, HbF, Tbil

Acceptable Samples

Whole blood (heparinized), arterial, mixed venous

Sample Volume

135 µL

Calculated Parameters

Alveolar Oxygen (A), Anion Gap, A-aDO₂, a/A, Arterial Oxygen Content (CaO₂), Arterial-Venous Oxygen Content Difference C(a-v)O₂, BE-b, BE-ecf, HCO₃, Osmolality, BUN/Creat Ratio, Capillary Oxygen Content (CcO₂), eGFR, ePV, MCHC, Normalized Calcium (nCa), Normalized Magnesium (nMg), nCa/nMg Ratio, Oxygen Index (OI), O₂Cap, O₂Ct, P50, Temperature Corrected pH/PCO₂/PO₂, PO₂/FIO₂ Ratio, Qsp/Qt (Physiological Shunt), Respiratory Index (RI), SBC, TCO₂, CvO₂

Test Ranges:

Prime The Basic Models

Critical Care Test Menu pH, PCO₂, PO₂, Hct, Na, K, Cl, iCa, Glu, Lac

Blood Gas Test Menu pH, PCO₂, PO₂

Acceptable Samples Whole blood (heparinized), arterial, mixed venous, capillary

Sample Volumes

Critical Care Model 100 µL Blood Gas Model 50 µL

Calculated Parameters

SO₂%, HCO₃-, TCO₂, BE-ecf, BE-b, SBC, O₂Ct, O₂Cap, A-aDO₂, a/A, RI, *P*O₂/FIO₂, Anion Gap**, P50**, Hb**

Temperature corrected pH, PCO₂, PO₂

Prime Electrolyte Model

Test Menu Na, K, Cl, iCa, iMg, pH,* Hct*

Acceptable Samples Whole blood, (heparinized) serum, plasma

 $\begin{array}{c} \text{Sample Volume} \\ 100 \ \mu L \end{array}$

Calculated Parameters niCa, niMg, niCa/niM

*Not available in all countries **Not available in the Blood Gas Test Menu

рН	6.5 - 8 (H+: 316.2 - 10 nmol/L)	iCa	0.4 - 10.8 mg/dL (0.1 - 2.7 mmol/L)	MetHb	0 - 80% (0 - 0.8)
PCO ₂	3 - 200 mmHg (0.4 - 26.7 kPa)	iMg	0.24 - 3.6 mg/dL (0.1 - 1.5 mmol/L)	COHb	0 - 60% (0 - 0.6)
TCO ₂	90 - 1260 mg/dL (5 - 70 mmol/L)	Lactate	2.7 - 180.2 mg/dL (0.3 - 20 mmol/L)	$SO_2\%$	30 - 100%
PO ₂	5 - 765 mmHg (0.66 - 102 kPa)	Glucose	15 - 500 mg/dL (0.8 - 28 mmol/L)	O ₂ Ct	2 - 33.4 mL/dL (495.04 - 2952.56 µmol/L)
Hct	12 - 70%	BUN (Urea)	3 - 100 mg/dL (0.17 - 5.5 mmol/L)	O ₂ Cap	2 - 33.4 mL/dL (495.04 - 2952.56 µmol/L)
Na	80 - 200 mmol/L	Creatinine	0.2 - 12 mg/dL (10 - 660 μmol/L)	tHb	5 - 25 g/dL (50 - 250 g/L)
Κ	1 - 20 mmol/L	HHb	0 - 33% (0 - 0.33)	sHb	Alert > 1.5%
Cl	50 - 200 mmol/L	O ₂ Hb	0 - 100% (0 - 1)	BarP	400 - 800 mmHg (53.3 - 106.7 kPa)

Certifications: ISO 13485:2012 Quality System Registration, CSA, CE Self Declared Complies to EN 61010, EN 55011

Optional Accessories

Combined 1D/2D Barcode Scanner: An optional barcode scanner is available for all Stat Profile Prime models. The scanner reads both 1D and 2D barcodes for patient and operator IDs. QC package inserts can also be scanned for lot number and expiration date.

Auto-Sampler: An optional Auto-Sampler is available for Stat Profile Prime Electrolyte models. The 10-position tray accommodates serum, plasma, and urine samples in 0.5 mL sample cups. The Auto-Sampler is easy to load with prompting by the Stat Profile Prime user interface.

References

- 1. Cheungpasitporn W et al. Mayo Clin Proc 2015;90(8):1001-10.
- 2. Lemaye CS et al. J Assoc Physicians India 2011;59:19-22.
- 3. Kumar S et al. J Clin Gerontol Geriatr 2016;7:104-108.
- 4. Charles BS et al. J Assoc Physicians India 2016;64(11):15-19.
- 5. Safavi M et al. Middle East J Anaesthesiol 2007;19(3):645-660.
- 6. Sawalha K et al. J Investig Med High Impact Case Rep 2020;8:1-3.
- 7. Yeh DD Lewandroski K et al. J Crit Care 2017;Dec;42:147-151.
- 8. Wilkes NJ et al. Anesth Analg 2002;95(4):828-834.
- 9. Hutten T et al. Nephrol Dial Transplant 2021;36(4):742-743.

- 10. Mandelbaum T et al. *Crit Care Med* 2011;39(12):2659-2664. 11. Duarte K et al. *JACC Heart Fail*, 2015. 3(11): p. 886-93.
- 11. Duarte K et al. *JACC Heart Fail*, 2015. 3(11) 12. Kobayashi M et al. *Clin Res Cardiol*, 2020.
- 12. Kobayashi M et al. *Clin Res Cardiol*, 2020.
- 13. Sulowicz W, Radziszewski A et al. *Kidney International* 2006;70:S36-S39. 14. Morley P et al. *Crit Care Med* 2018;46(2):327-328.
- 15. Turcato G et al. *J Crit Care*. 2020 Aug;58:106-112.

Nova Biomedical Headquarters: 200 Prospect St., Waltham, MA 02454 U.S.A.: +1-781-894-0800 800-458-5813 FAX: +1-781-894-5915 Int'l FAX: +1-781-899-0417 e-mail: info@novabio.com Nova Biomedical Benelux B.V.: Europalaan 4,5232 BC, Den Bosch, The Netherlands, TEL: +31(0)733032701 e-mail: NL-info@novabio.com or BE-info@novabio.com Nova Biomedical Brasil: Rua Massena, 107, Jardim Canada, Nova Lima - MG, CEP: 34007-746 Brasil, TEL: +5531-3360-2500, email: BR-info@novabio.com Nova Biomedical Granda, Ltd: 17 – 2900 Argentia Road, Mississauga, Ontaria L5N 7X9 Canada, TEL: +1905-567-7700 800-263-5999 FAX: +1-905-567-5496 e-mail: CA-info@novabio.com Nova Biomedical France: Parc Technopolis - Bdt. Sigma 3 Avenue du Canada 91940 Les Ulis Courtaboeuf, France, TEL: +33-164 86 1174 FAX: +33-164 46 24 03 e-mail: TR-info@novabio.com Nova Biomedical Grandh, Deutschland: Hessening 13 A, Geb. 6, 64546 Mörfelden-Walladr, Germany, TEL: +44-6105 4505-67 X-100 5405-37 e-mail: DE-info@novabio.com Nova Biomedical Iberia, S.L.: c/Vic 17, Planta 3A 08173 Sant Cugat del Vallés, Barcelona, Spain, TEL: +34 935531173 e-mail: ES-info@novabio.com Nova Biomedical Iberia, S.L.: c/Vic 17, Planta 3A 08173 Sant Cugat del Vallés, Barcelona, Spain, TEL: +34 935531173 e-mail: ES-info@novabio.com Nova Biomedical Iberia, S.L.: c/Vic 17, Planta 3A 08173 Sant Cugat del Vallés, Barcelona, Spain, TEL: +34 935531173 e-mail: ES-info@novabio.com Nova Biomedical Iberia, S.L.: c/Vic 17, Planta 3A 08173 Sant Cugat del Vallés, Barcelona, Spain, TEL: +34 935531173 e-mail: ES-info@novabio.com Nova Biomedical Iberia, S.L.: c/Vic 17, Planta 3A 08173 Sant Cugat del Vallés, Barcelona, Spain, TEL: +34 935531173 e-mail: ES-info@novabio.com Nova Biomedical K.L.: Japan: Harumi Island Triton Square Office Towar XF, T-8-10 Harumi, Chuo-ku, Tkova 10-4007, Japan TEL: 03-5144-4174 FAX: 03-5144-4177 e-mail: ip-info@novabio.com Nova Biomedical S.L.: cmbH: Heastraser 7, 8048 Titch, Switzerland, TEL: +41-1521-6655 FAX: +41-1521-6655 e-mail: CH-info@novabio.com Nova Biomedical Surker: E