

Cognitive impairment in dialysis patients; The contribution of the CONNECT network.

Prof. Giovambattista Capasso University of Campania Luigi Vanvitelli Department of Translational Medical Science Biogem Istitute Molecular Biology & Genetics

Potential conflicts of interest declaration

The content of the following speech is the result of efforts to achieve the maximum degree of impartiality and independence.

As a speaker, I hereby affirm that there are <u>no conflicts of interest</u> concerning the content of the following speech that are the result of employment, an advisory function or financial contributions for research projects, lectures or any other activity.

New frontiers of nephrology

Cardio-nephrology

Intestinal microbioma - Kidney interaction

Onco-nephrology

New pharmacological tools

Vaptans, SGLT2 inhibitors, biological immunotherapy

Brain-kidney interaction: the new frontier of medicine

WHY NOW?

New tools to study the brain

- •Functional Magnetic Resonance (fMRI) to visualize human brain activity
- •Tractography to identify brain connections in vivo
- •Optogenetics to visualize and activate single neurons in vivo

New tools to study the kidney

- •Metabolomics, proteomics, peptidomics to identify kidney-handled substances
- •2-photon microscopy to visualize kidney microcirculation

Big Data Analysis

How the kidney influences the brain?

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Countries: 27

- Including:
 - Iran
- **United States**

Interdisciplinary:

- Nephrologists ۰
- Neurologists ۲

- •
- Neurophysiologists ۰
- Geriatricians

Biochemists

- Epidemiologists •
- **Kidney Physiologists** ۰

Brain-kidney interactions in CKD

Conclusion

CKD and acidosis are associated with forms of cognitive dysfunction. Further studies are required to test for causality, mechanisms, and therapies.

Narrative review

Chronic kidney disease and neurological disorders: are uraemic toxins the missing piece of the puzzle?

Background

Along with traditional cardiovascular risk factors (such as diabetes, inflammation, hypertension and dyslipidaemia), non-traditional risk factors related to kidney damage (such as uraemic toxins) may predispose patients with CKD to neurological disorders.

Aim

Potential clinical impact of CKD on cerebrovascular and neurological complications

Potential impact of these findings on patient care, and unmet medical needs

Results

Uraemic toxins that might influence brain function:

Small water-soluble compounds: Asymmetric dimethylarginine (ADMA) Symmetric dimethylarginine (SDMA) Trimethylamine-N-oxide (TMAO) Uric acid; Urea; Methylguanidine guanidine

Protein-bound compounds

Indoles (Indoxylsulfate (IS), Indoxyl glucuronide, Indole acetic acid (IAA), Kynurenine) Cresols (p-cresylsulfate (pCS), p-cresyl glucuronide) Hippurates (Hippuric acid (HA)) 3-Carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF)

Middle molecules B2 microglobulin (B2M); Interleukin-6; Parathyroid hormone (PTH)

Conclusion

The uraemic toxins that accumulate in the blood in ESRD might explain the association between CKD and cerebrovascular/neurologic complications (at least in part in more advanced CKD stages) and constitute potentially valuable therapeutic targets.

Liabeuf S., et al. NDT (2021) @NDTSocial

Mild Cognitive Impairment prevalence in patients with CKD

Viggiano & Capasso 2020, Nat Rev Nephrol

Cognitive Impairment Tests

Viggiano D. & Capasso G. Nephrology Dialysis Transplantation, 2019

Brain modifications in CKD-HD

Viggiano D. & Capasso G. Nature Reviews Nephrol 2020

CI during renal kidney failure

Uremic neurotoxins : Indoxyl sulfate (IS) P-cresyl sulfate Guanidine compounds Excessive phosphates FGF23

Mechanisms of uremic toxin transport in the brain : the importance of the glymphatic system

Viggiano D. & Capasso G. Nature Reviews Nephrol 2020

High prevalence of CI & damage in HD patients

- Persistent cognitive decline and behavioural disturbance
- No interference with independence and daily functioning (in contrast to dementia)
- In HD patients: 30-60% have MCI, 14% have dementia

Murray et al. 2006: 374 HD patients

- Mean age 71 years
- Dialysis vintage 33 months

Similar findings by Drew et al. (2020)

Tamura et al. Kidney Int 2011 79:14–22; Mc Adams-De Marco CJASN 2018

Acceleration of CI & damage after HD initiation

- 314 patients of HD
- Only 30% of HD patients had intact cognitive performance

Loss of executive function after dialysis initiation in adults with chronic kidney disease

Manjula Kurella Tamura^{1,2}, Eric Vittinghoff³, Chi-yuan Hsu⁴, Karman Tam¹, Stephen L. Seliger⁵, Stephen Sozio⁶, Michael Fischer⁷, Jing Chen⁸, Eva Lustigova⁸, Louise Strauss⁹, Rajat Deo¹⁰, Alan S. Go¹¹ and Kristine Yaffe^{3,12}; for the CRIC Study Investigators¹³

Prospective study in CKD patients

- 123 patients: no transition to dialysis
- 37 patients: transition to dialysis, 78% HD

Cerebral damage after HD initiation

White matter damage in maintenance hemodialysis patients: a diffusion tensor imaging study

David A. Drew^{1*}, Bang-Bon Koo², Rafeeque Bhadelia³, Daniel E. Weiner¹, Sarah Duncan¹, Maria Mendoza-De la Garza⁴, Aditi Gupta⁵, Hocine Tighiouart^{6,7}, Tammy Scott⁸ and Mark J. Sarnak¹

Randomized Clinical Trial of Dialysate Cooling and Effects on Brain White Matter

Mohamed T. Eldehni, Aghogho Odudu, and Christopher W. McIntyre

73 incident HD patients were randomised to

- Dialysate temperature 37.0 °C
- 0.5 °C < core temp (min. 36.0 °C)

Diffusion Tensor Imaging (DTI) to assess brain white matter microstructure at baseline and after 1 year

Use of cool dialysate was associated with better hemodynamic stability

Eldehni et al. JASN 2015;26:957-965

HD related decline in CBF velocity and WM hyperintensities progress

In 82 patients, mean cerebral flow velocity fell from 47 to 40 cm/s (-10%)

Transcranial Doppler ultrasound

Change in global and regional cerebral blood flow

Polinder et al. JASN 2018;29:1317-25

Why use Functional near infrared spectroscopy (fNIRS) on CKD patients ?

- Real time oxygenation evaluation
- Free movement during acquisition
- Handling device and easy to transport
- Low cost and real time neuroimaging
- Good temporal resolution (up to 100Hz)

Non-invasive imaging technology that enables measurement of changes in oxyhemoglobin and deoxyhemoglobin, which reflect local brain activity.

- Non-invasive
- Excellent resolution
 - Real-time signaling

Prof. Alexandre Andrade

CI in Peritoneal Dialysis patients

Meta analysis incuding 8 studies from 1980-2019 of **1736 patients** showed **CI prevalence in 28.7%**

In a multicenter cross-sectional PD researction of **459** patients **28.4% had CI** and 52% with depression

SHEA YF et al. 2019,Springer SHEA YF et al. 2016 - VOL. 36, NO. 3

Cognitive Function in PD VS HD

- 271 patients at baseline and after 1 year
- Two of the CI tests done(TMT-B & D2-R) showed better cognitive function in PD patients than in HD patients at baseline and after 1 year

TMT-B: lower scores = better CF **d2-R** : higher scores = better CF

D Neumann et al. Kidney International 2018 93430-438

SUMMARY

CI prevalence is extremely high in HD patients

HD initiation seems to accelerate decline in cognitive function & increase progression of damage

Cognitive function declines faster in patients on HD compared with PD

Background damage

Related to:

- CV co-morbidity
- Duration & severity of CKD

Hemodialysis-related:

SUMMARY

- 1. Significant alteration in white matter integrity is observed in HD patients
- 2. HD causes change in global and regional cerebral blood flow
- 3. Cerebral perfusion decreases in patients under HD
- 4. Conventional HD reduces cerebral perfusion and probably contributes to ischemic damage and CI
- 5. Cool dialysate, may attenuate cognitive decline

BIOGEM TRANSLATIONAL NEPHROLOGY LABORATORY

JOIN CONNECT

The COST Action CONNECT welcomes researchactive scientists working in the field

HOW TO PARTICIPATE

https://connectcost.eu/

0